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Holomorph

Let N be any group. All groups are finite in this talk!!!

The abstract holomorph of N is the outer semidirect product

Hol(N) = N oAut(N)

with Aut(N) acting on N naturally.

The permutational holomorph of N is the inner semidirect product

Hol(N) = λ(N) oAut(N) = ρ(N) oAut(N)

as a subgroup of the symmetric group Sym(N) of N.

Here λ(N) and ρ(N), respectively, denote the subgroups of left and right

translations. Explicitly, their elements are given by

1 λ : N −→ Sym(N); λ(η) = (x 7→ ηx)

2 ρ : N −→ Sym(N); ρ(η) = (x 7→ xη−1)

They are just different ways to identify N as a subgroup of Sym(N).
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Regular subgroups of the holomorph

A subgroup of Hol(N) is regular if its action on N is transitive and free.

Let G be a group of the same order as N.

The existences of the following are equivalent:

1 a regular subgroup isomorphic to G inside the holomorph of N

2 a Hopf-Galois structure of type N on a G -Galois extension of fields

3 a skew brace with additive group N and circle group G

Important Question. What are some ways to construct regular subgroups

isomorphic to G inside the holomorph of N?

There is a method, due to Byott and Childs, which uses fixed point free pairs

of homomorphisms and group factorizations.

Recall that a pair f , h : G −→ Γ of homomorphisms is said to be fixed point

free if f (σ) = h(σ) only for σ = 1G .

Let me first recall this construction.
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Fixed point free pair to regular subgroup

Let G be a group of the same order as N.

Hol(N) = λ(N) oAut(N) = ρ(N) oAut(N)

Let f , h : G −→ N be a fixed point free pair of homomorphisms. Define

G(f ,h) = {λ(f (σ))ρ(h(σ)) : σ ∈ G}.

Notice that we can rewrite

λ(f (σ))ρ(h(σ)) = λ(f (σ))λ(h(σ)−1)λ(h(σ))ρ(h(σ))

= λ(f (σ)h(σ)−1) · conj(h(σ)).

Thus h is basically the projection of G(f ,h) onto Aut(N) along λ(N).

Similarly, we can rewrite

λ(f (σ))ρ(h(σ)) = ρ(h(σ))ρ(f (σ)−1)ρ(f (σ))λ(f (σ))

= ρ(h(σ)f (σ)−1) · conj(f (σ)).

Thus f is basically the projection of G(f ,h) onto Aut(N) along ρ(N).
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Fixed point free pair to regular subgroup

Let f , h : G −→ N be a fixed point free pair of homomorphisms. Define

G(f ,h) = {λ(f (σ))ρ(h(σ)) : σ ∈ G}

= {ρ(h(σ)f (σ)−1) · conj(f (σ)) : σ ∈ G}.

It is a subgroup of Hol(N) because λ(N) and ρ(N) commute element-wise.

Consider the map ϕ : G −→ N defined by ϕ(σ) = f (σ)h(σ)−1.

ϕ(N) is then the orbit of 1N under the action of G(f ,h).

(f , h) is fixed point free ⇐⇒ ϕ is injective

⇐⇒ ϕ is surjective

⇐⇒ G(f ,h) acts transitively on N

⇐⇒ G(f ,h) is a regular subgroup of Hol(N)

It is easy to see that G(f ,h) is isomorphic to G in this case.
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Fixed point free pair to group factorization

Let f , h : G −→ N be a fixed point free pair of homomorphisms.

Consider the map ϕ : G −→ N defined by ϕ(σ) = f (σ)h(σ)−1.

That ϕ is surjective implies that

N = f (G )h(G )

and this yields a factorization of the group N.

Question. Suppose that we have factorization

N = AB

for some subgroups A and B. Can we construct

1 a group G of the same order as N

2 a fixed point free pair of homomorphisms f , h : G −→ N

such that A = f (G ) and B = h(G )?
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Exact group factorization to fixed point free pair

Partial Answer. Yes under suitable assumptions.

Suppose that we have an exact factorization

N = AB with A ∩ B = 1

for some subgroups A and B. Then, we can construct

1 a group G of the same order as N

G = A× B

2 a fixed point free pair of homomorphisms f , h : G −→ N{
f (a, b) = a

h(a, b) = b
for any a ∈ A and b ∈ B

It is clear that A = f (G ) and B = h(G ).
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Summary

exact group factorization

N = AB, A ∩ B = 1

group factorization

N = f (G )h(G )

fixed point free pair of homomorphisms

f , h : G −→ N

regular subgroup in the holomorph of N

{ρ(h(σ)f (σ)−1) · conj(f (σ)) : σ ∈ G} ' G

G = A × B

C. Tsang (Ochanomizu University) Regular subgroups in the holomorph 2023/5/29 ∼ 2023/6/2 8 / 21



Generalization

However, the regular subgroups that can be constructed this way lie inside

λ(N) o Inn(N) = ρ(N) o Inn(N).

We want to generalize this construction by allowing outer automorphisms.

We shall restrict to the case when N has trivial center.

The natural homomorphism conj is then invertible.

conj : N −→ Inn(N); conj(η) = (x 7→ ηxη−1)

The previous construction may be restated as follows.

Let G be a group of the same order as N.

Let f , h : G −→ Inn(N) be a fixed point free pair of homomorphisms.

G(f ,h) = {ρ(conj−1(h(σ)f (σ)−1)) · f (σ) : σ ∈ G}

is a regular subgroup of Hol(N) which is isomorphic to G .
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Fixed point free pair to regular subgroup

Let N be a centerless group. Let G be a group of the same order as N.

Hol(N) = λ(N) oAut(N) = ρ(N) oAut(N)

Let f , h : G −→ Aut(N) be a fixed point free pair of homomorphisms. Put

G(f ,h) = {ρ(conj−1(h(σ)f (σ)−1)) · f (σ) : σ ∈ G},

= {λ(conj−1(f (σ)h(σ)−1)) · h(σ) : σ ∈ G}.

Here f and h correspond to projections onto Aut(N) along ρ(N) and λ(N).

However, in order for the above to make sense, we need to assume that

f (σ) ≡ h(σ) (mod Inn(N)) for all σ ∈ G .

It is not hard to check that this is a regular subgroup of Hol(N) which is

isomorphic to G .

In fact, all regular subgroups of Hol(N) can be constructed this way.
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Fixed point free pair to group factorization

Let f , h : G −→ Aut(N) be a fixed point free pair of homomorphisms s.t.

(∗) f (σ) ≡ h(σ) (mod Inn(N)) for all σ ∈ G .

Let P = f (G )h(G ). In general, one can show the following:

a Inn(N) ≤ P ≤ Aut(N) and P is a subgroup of Aut(N)

b f (G )Inn(N) = h(G )Inn(N) = f (G )h(G )

We get a tri-factorization of some subgroup between Inn(N) and Aut(N).

Question. Suppose that Inn(N) ≤ P ≤ Aut(N) and we have a factorization

P = AB with AInn(N) = BInn(N)

for some subgroups A and B. Can we construct

1 a group G of the same order as N

2 a fixed point free pair of homomorphisms f , h : G −→ Aut(N) s.t. (∗)

such that A = f (G ) and B = h(G )?
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Exact group factorization to fixed point free pair

Partial Answer. Yes under suitable assumptions.

Suppose that Inn(N) ≤ P ≤ Aut(N) and we have a exact factorization

P = AB, A ∩ B = 1 with AInn(N) = BInn(N), A = (A ∩ Inn(N)) o C

for some subgroups A and B. Then, we can construct

1 a group G of the same order as N

G = A× B is too big unless P = Inn(N)

G = (A ∩ Inn(N)) oα B works because

|G | = |A ∩ Inn(N)||B| =
|A ∩ Inn(N)|

|A|
· |A||B|

=
|Inn(N)|
|AInn(N)|

· |P| =
|N|
|P|
· |P|

= |N|
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Exact group factorization to fixed point free pair

Here we let B act on A ∩ Inn(N) via the homomorphism

B
B

B ∩ Inn(N)

BInn(N)

Inn(N)

'

AInn(N)

Inn(N)

A

A ∩ Inn(N)

'

C
'

θ

and via conjugation by C inside A.

α(b)(a) = θ(b)aθ(b)−1 for all a ∈ A ∩ Inn(N) and b ∈ B
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Exact group factorization to fixed point free pair

2 a fixed point free pair of homomorphisms f , h : G −→ Aut(N) s.t. (∗){
f (a, b) = aθ(b)

h(a, b) = b
for any a ∈ A ∩ Inn(N) and b ∈ B

It is clear that A = f (G ) and B = h(G ).

Observation. If P = Inn(N), then clearly

A = A ∩ Inn(N) and so C = 1.

In particular, the homomorphism θ : B −→ C is trivial and

G = (A ∩ Inn(N)) o B = A× B

is simply a direct product, and{
f (a, b) = a

h(a, b) = b
for any a ∈ A and b ∈ B

are simply the projection maps.
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Summary (when N is centerless)

exact group factorization

Inn(N) ≤ AB ≤ Aut(N)

AInn(N) = BInn(N)

A ∩ B = 1, A = (A ∩ Inn(N)) o C

group factorization

Inn(N) ≤ f (G )h(G ) ≤ Aut(N)

f (G )Inn(N) = h(G )Inn(N)

fixed point free pair of homomorphisms

f , h : G −→ Aut(N) such that f (σ) ≡ h(σ) (mod Inn(N))

regular subgroup in the holomorph of N

{ρ(conj−1(h(σ)f (σ)−1)) · f (σ) : σ ∈ G} ' G

G = (A ∩ Inn(N)) o B
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An application

Conjecture. If N is solvable, then a regular subgroup of Hol(N) is solvable.

Converse. If N is insolvable, then a regular subgroup of Hol(N) is insolvable.

We can characterize the non-abelian simple groups N for which the converse

fails to hold, namely the non-abelian simple groups N ...

1 whose holomorph contains a solvable regular subgroup

2 which is the type of a Hopf-Galois structure on some solvable extension

3 which is the additive group of some skew brace with solvable circle group

Theorem (T. 2023, BLMS)

Let N be a non-abelian simple group. The holomorph of N contains a solvable

regular subgroup if and only if N is isomorphic to one of the following:

a PSL3(3), PSL3(4), PSL3(8), PSU3(8), PSU4(2), M11;

b PSL2(q) with q 6= 2, 3 a prime power.
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Forward implication

exact group factorization

Inn(N) ≤ AB ≤ Aut(N)

AInn(N) = BInn(N)

A ∩ B = 1, A = (A ∩ Inn(N)) o C

group factorization

Inn(N) ≤ f (G )h(G ) ≤ Aut(N)

f (G )Inn(N) = h(G )Inn(N)

fixed point free pair of homomorphisms

f , h : G −→ Aut(N) such that f (σ) ≡ h(σ) (mod Inn(N))

regular subgroup in the holomorph of N

{ρ(conj−1(h(σ)f (σ)−1)) · f (σ) : σ ∈ G} ' G

G = (A ∩ Inn(N)) o B

(solvable)
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Forward implication

Suppose that Hol(N) contains a solvable regular subgroup, G say.

Then there exist homomorphisms f , h : G −→ Aut(N) such that

Inn(N) ≤ f (G )h(G ) ≤ Aut(N).

Since N is non-abelian simple, the group f (G )h(G ) is almost simple whose

socle is equal to Inn(N) ' N.

Since G is solvable, the subgroups f (G ) and h(G ) are also solvable.

Almost simple groups which are factorizable as the product of two solvable

subgroups have been characterized [Li-Xia 2022].

Their socle must be isomorphic to one of the following:

a PSL3(3), PSL3(4), PSL3(8), PSU3(8), PSU4(2), M11;

b PSL2(q) with q 6= 2, 3 a prime power,

as stated in the theorem. �
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Backward implication

exact group factorization

Inn(N) ≤ AB ≤ Aut(N)

AInn(N) = BInn(N)

A ∩ B = 1, A = (A ∩ Inn(N)) o C

group factorization

Inn(N) ≤ f (G )h(G ) ≤ Aut(N)

f (G )Inn(N) = h(G )Inn(N)

fixed point free pair of homomorphisms

f , h : G −→ Aut(N) such that f (σ) ≡ h(σ) (mod Inn(N))

regular subgroup in the holomorph of N

{ρ(conj−1(h(σ)f (σ)−1)) · f (σ) : σ ∈ G} ' G

G = (A ∩ Inn(N)) o B

(solvable)
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Forward implication

It is enough to show that there exists Inn(N) ≤ AB ≤ Aut(N) for some

solvable subgroups A and B satisfying

AInn(N) = BInn(N), A ∩ B = 1, A splits over A ∩ Inn(N).

This is indeed true for all of the N’s in question except N = PSU3(8).

a PSL3(3), PSL3(4), PSL3(8), PSU4(2), M11: Magma

b PSL2(q) with q 6= 2, 3 a prime power: Singer cycle and the stabilizer of

a one-dimensional subspace

For the problematic group N = PSU3(8), we find a solvable group G of the

same order as N and construct a fixed point free pair of homomorphisms

f , h : G −→ Aut(N) satisfying

f (σ) ≡ h(σ) (mod Inn(N))

using the help of Magma. �
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Thank you for listening!
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